ทฤษฎีบทต่างๆของจำนวนจริง
ทฤษฎีบทต่างๆ
จากสมบัติของระบบจำนวนจริงที่ได้กล่าวไปแล้ว สามารถนำมาพิสูจน์เป็นทฤษฎีบทต่างๆ ได้ดังนี้
ทฤษฎีบทที่ 1 กฎการตัดออกสำหรับการบวก
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า a + c = b + c แล้ว a = b
ถ้า a + b = a + c แล้ว b = c
ทฤษฎีบทที่ 2 กฎการตัดออกสำหรับการคูณ
เมื่อ a, b, c เป็นจำนวนจริงใดๆ
ถ้า ac = bc และ c ≠ 0 แล้ว a = b
ถ้า ab = ac และ a ≠ 0 แล้ว b = c
ทฤษฎีบทที่ 3 เมื่อ a เป็นจำนวนจริงใดๆ
a · 0 = 0
0 · a = 0
ทฤษฎีบทที่ 4 เมื่อ a เป็นจำนวนจริงใดๆ
(-1)a = -a
a(-1) = -a
ทฤษฎีบทที่ 5 เมื่อ a, b เป็นจำนวนจริงใดๆ
ถ้า ab = 0 แล้ว a = 0 หรือ b = 0
ทฤษฎีบทที่ 6 เมื่อ a เป็นจำนวนจริงใดๆ
a(-b) = -ab
(-a)b = -ab
(-a)(-b) = ab
เราสามารถนิยามการลบและการหารจำนวนจริงได้โดยอาศัยสมบัติของการบวกและการคูณใน
ระบบจำนวนจริงที่ได้กล่าวไปแล้วข้างต้น
• การลบจำนวนจริง
บทนิยาม เมื่อ a, b เป็นจำนวนจริงใดๆ
a- b = a + (-b)
นั่นคือ a - b คือ ผลบวกของ a กับอินเวอร์สการบวกของ b
• การหารจำนวนจริง
บทนิยาม เมื่อ a, b เป็นจำนวนจริงใดๆ เมื่อ b ≠ 0
= a(b-1)
นั่นคือ คือ ผลคูณของ a กับอินเวอร์สการคูณของ b
สวัสดีคะ เพื่อนๆทุกคน