สื่อกลางประเภทไม่มีสาย
สื่อที่ไม่ใช้สาย สื่อประเภทนี้เป็นระบบตัวกลางที่ส่งเป็นคลื่นวิทยุ เช่น อากาศที่เราใช้ส่งคลื่นวิทยุ คลื่นไมโครเวฟ (Microwave) รวมทั้งการสื่อสารผ่านดาวเทียม
ดาวเทียม
การใช้ดาวเทียมสำหรับการส่งข้อมูลแบบดิจิตอลก็เหมือนกับการส่งแบบไมโครเวฟนั่นเองค่ะ ดาวเทียมนั้นจะต้องรับและส่งสัญญาณแบบสันตรง ดาวเทียมจะช่วยส่งสัญญาณในระยะไกลซึ่งทำได้มากขึ้นในลักษณะของการข้ามภูมิภาค ข้ามทวีป ซึ่งสัญญาณไมโครเวฟนั้นไม่สามารถทำได้เนื่องจาก ดาวเทียมนั้นจะมีฟุตพริ้น(Footprint) สำหรับฟุตพริ้น(Footprint) ก็คือจำนวนพื้นที่บนผิวโลกที่ดาวเทียมหนึ่งครอบคลุมการส่งสัญญาณได้นั่นเองค่ะ
ในปัจจุบันนี้มีการใช้สัญญาณดาวเทียมที่โคจรแบ่งออกเป็น 3 ประเภท ก็คือ
• ดาวเทียมแบบจีอีโอ (Geostationary Earth Orbit : GEO) ดาวเทียมชนิดนี้ จะเหมาะกับการส่งสัญญาณโทรทัศน์
• ดาวเทียมแบบโคจรระดับกลาง (Medium Earth Orbit : MEO) ดาวเทียมชนิดนี้ในการโคจรจะโน้มเอียงไปยังส้นศูนย์สูตรนั่นเอง
• ดาวเทียมแบบระดับต่ำ (Low Earth Orbit : LEO) ดาวเทียมชนิดนี้จำนวนมากสามารถครอบคลุมการส่งสัญญาณบนโลกให้ทั่วถึงได้
ที่จริงดาวเทียมก็คือสถานีไมโครเวฟลอยฟ้านั่นเอง ซึ่งทำหน้าที่ขยายและทบทวนสัญญาณข้อมูล รับและส่งสัญญาณข้อมูลกับสถานีดาวเทียมที่อยู่บนพื้นโลก สถานีดาวเทียมภาคพื้นจะทำการส่งสัญญาณข้อมูล ไปยังดาวเทียมซึ่งจะหมุนไปตามการหมุนของโลกซึ่งมีตำแหน่งคงที่เมื่อเทียมกับตำแหน่งบนพื้นโลก ดาวเทียมจะถูกส่งขึ้นไปให้ลอยอยู่สูงจากพื้นโลก เครื่องทบทวนสัญญาณของดาวเทียม (Transponder) จะรับสัญญาณข้อมูลจากสถานีภาคพื้นซึ่งมีกำลังอ่อนลงมากแล้วมาขยาย จากนั้นจะทำการทบทวนสัญญาณ และตรวจสอบตำแหน่งของสถานีปลายทาง แล้วจึงส่งสัญญาณข้อมูลไปด้วยความถี่ในอีกความถี่หนึ่งลงไปยังสถานีปลายทาง การส่งสัญญาณข้อมูลขึ้นไปยังดาวเทียมเรียกว่า "สัญญาณอัปลิงก์" (Up-link) และการส่งสัญญาณข้อมูลก็จะกลับลงมายังพื้นโลกเรียกว่า "สัญญาณ ดาวน์-ลิงก์ (Down-link) ลักษณะของการรับส่งสัญญาณข้อมูลอาจจะเป็นแบบจุดต่อจุด (Point-to-Point) หรือแบบแพร่สัญญาณ นั่นเองค่ะ
ข้อดี-ข้อเสีย ของการส่งสัญญาณแบบดาวเทียม
ข้อดี
การส่งข้อมูลหรือการส่งสัญญาณแบบดาวเทียมจะสามรถรับ-ส่ง ข้อมูลได้เร็ว สะดวกต่อการติดต่อสื่อสาร และสามารถส่งข้อมูลได้ในระยะทางที่ไกล
ข้อเสีย
การส่งสัญญาณข้อมูลทางดาวเทียมก็คือระบบดาวเทียมนั้น คล้ายกับไมโครเวฟ คือ อาจจะ
ถูกกระทบโดยสภาพอากาศ ดังนั้น มีการล่าช้าของสัญญาณในการส่งข้อมูลแต่ละช่วง ดังนั้นการเชื่อมโยงข้อมูล จัดการกับปัญหาความล่าช้า
สัญญาณข้อมูลสามารถถูกรบกวนจากสัญญาณ ภาคพื้นอื่น ๆ ได้ อีก ในการส่งสัญญาณเนื่องจากระยะทางขึ้น-ลง ของสัญญาณ และที่สำคัญคือ มีราคาสูงในการลงทุนทำให้ค่าบริการสูงตามขึ้นมา
คลื่นวิทยุ
คลื่นวิทยุที่กระจายออกจากสายอากาศ จะเดินทางไปทุกทิศทาง ในทุกระนาบ การกระจายคลื่นนี้มีลักษณะเป็นการขยายตัวของพลังงานออกเป็นทรงกลม ถ้าจะพิจารณาในส่วนของพื้นที่แทนหน้าคลื่นจะเห็นได้ว่ามันพุ่งออกไปเรื่อย ๆ จากจุดกำเนิด และสามารถเขียนแนวทิศทางเดินของหน้าคลื่นได้ด้วยเส้นตรงหรือเส้นรังสี เส้นรังสีที่ลากจากสายอากาศออกไปจะทำมุมกับระนาบแนวนอน มุมนี้เรียกว่า มุมแผ่คลื่น อาจมีค่าเป็นบวก ( มุมเงย ) หรือมีค่าเป็นลบ ( มุมกดลง ) ก็ได้ มุมของการแผ่คลื่นนี้อาจนำมาใช้เป็นตัวกำหนดประเภทของคลื่นวิทยุได้ โดยทั่วไปคลื่นวิทยุอาจแบ่งออกเป็น 2 ประเภทใหญ่ ๆ คือ คลื่นดิน (GROUND WAVE ) กับคลื่นฟ้า (SKY WAVE ) พลังงานคลื่นวิทยุส่วนใหญ่จะเดินทางอยู่ใกล้ ๆ ผิวโลกหรือเรียกว่าคลื่นดิน ซึ่งคลื่นนี้จะเดินไปตามส่วนโค้งของโลก คลื่นอีกส่วนที่ออกจากสายอากาศ ด้วยมุมแผ่คลื่นเป็นค่าบวก จะเดินทางจากพื้นโลกพุ่งไปยังบรรยากาศจนถึงชั้นเพดานฟ้าและจะสะท้อนกลับลงมายังโลกนี้เรียกว่า คลื่นฟ้า
ผลของคลื่นวิทยุที่มีต่อร่างกาย
คลื่นวิทยุสามารถทะลุเข้าไปในร่างกายมนุษย์ได้ลึกประมาณ 1/10 ของความยาวคลื่นที่ตกกระทบ และอาจทำลายเนื้อเยื่อของอวัยวะภายในบางชนิดได้ ผลการทำลายจะมากหรือน้อย ขึ้นอยู่กับความเข้ม ช่วงเวลาที่ร่างกายได้รับคลื่นและชนิดของเนื้อเยื่อ อวัยวะที่มีความไวต่อคลื่นวิทยุ ได้แก่ นัยน์ตา ปอด ถุงน้ำดี กระเพาะปัสสาวะ อัณฑะ และบางส่วนของระบบทางเดินอาหาร โดยเฉพาะนัยน์ตา และอัณฑะ เป็นอวัยวะที่อ่อนแอที่สุดเมื่อได้รับคลื่นวิทยุช่วงไมโครเวฟ
คลื่นวิทยุช่วงความถี่ต่าง ๆ อาจมีผลต่อร่างกายดังนี้
1. คลื่นวิทยุที่มีความถี่น้อยกว่า 150 เมกะเฮิรตซ์ (มีความยาวคลื่นมากกว่า 2 เมตร) คลื่นจะทะลุผ่านร่างกายโดยไม่ก่อให้เกิดผลใด ๆ เนื่องจากไม่มีการดูดกลืนพลังงานของคลื่นไว้ ร่างกายจึงเปรียบเสมือนเป็นวัตถุโปร่งใสต่อคลื่นวิทยุช่วงนี้
2. คลื่นวิทยุที่มีความถี่ระหว่าง 150 เมกะเฮิรตซ์ ถึง 1.2 จิกะเฮิรตซ์ (มีความยาวคลื่นระหว่าง 2.00 ถึง 0.25 เมตร) คลื่นวิทยุช่วงนี้สามารถทะลุผ่านเข้าไปในร่างกายได้ลึกประมาณ 2.5 ถึง 20 เซนติเมตร เนื้อเยื่อของอวัยวะภายในบริเวณนั้นจะดูดกลืนพลังงานของคลื่นไว้ถึงร้อยละ 40 ของพลังงานที่ตกกระทบ ทำให้เกิดความร้อนขึ้นในเนื้อเยื่อ โดยที่ร่างกายไม่สามารถรู้สึกได้ ถ้าร่างกายไม่สามารถกระจายความร้อนออกไปในอัตราเท่ากับที่รับเข้ามา อุณหภูมิหรือระดับความร้อนของร่างกายจะสูงขึ้น เป็นอันตรายอย่างยิ่งต่อร่างกาย ความร้อนในร่างกายที่สูงกว่าระดับปกติอาจก่อให้เกิดผลหลายประการ เช่น
- เลือดจะแข็งตัวช้ากว่าปกติ ผลอันนี้ถ้ามีการเสียเลือดเกิดขึ้น อาการจะมีความรุนแรง
- การหมุนเวียนของเลือดเร็วขึ้น
- ฮีโมโกลบินของเม็ดเลือดแดงจะมีความจุออกซิเจนลดลง ทำให้เลือดมีออกซิเจนไม่เพียงพอเลี้ยงเนื้อเยื่อต่าง ๆ เมื่อเนื้อเยื่อขาดออกซิเจนจะทำให้เซลล์สมอง ระบบประสาทส่วนกลางและอวัยวะภายในขาดออกซิเจนด้วย อาจทำให้มีการกระตุกของกล้ามเนื้อจนถึงชัก ถ้าสภาพเช่นนี้ดำเนินต่อไป ผลที่ตามมาก็คือ ไม่รู้สึกตัวและอาจเสียชีวิตได้
3. คลื่นวิทยุที่มีความถี่ระหว่าง 1-3 จิกะเฮิรตซ์ (มีความยาวคลื่นระหว่าง 30 ถึง 10 เซนติเมตร) ทั้งผิวหนังและเนื้อเยื่อลึกลงไปดูดกลืนพลังงานได้ราวร้อยละ 20 ถึงร้อยละ 100 ขึ้นอยู่กับชนิดของเนื้อเยื่อ คลื่นวิทยุเช่นนี้เป็นอันตรายอย่างยิ่งต่อนัยน์ตา โดยเฉพาะเลนส์ตาจะมีความไวเป็นพิเศษต่อคลื่นวิทยุความถี่ประมาณ 3 จิกะเฮิรตซ์ เพราะเลนส์ตามีความแตกต่างจากอวัยวะอื่นตรงที่ไม่มีเลือดมาหล่อเลี้ยงและไม่มีกลไกซ่อมเซลล์ ดังนั้นเมื่อนัยน์ตาได้รับคลื่นอย่างต่อเนื่องจะทำให้ของเหลวภายในตามีอุณหภูมิสูงขึ้น โดยไม่สามารถถ่ายโอนความร้อนเพื่อให้อุณหภูมิลดลงได้เหมือนเนื้อเยื่อของอวัยวะอื่น ๆ จึงจะก่อให้เกิดอันตรายอย่างรุนแรงตามมา พบว่าถ้าอุณหภูมิของตาสูงขึ้นเซลล์เลนส์ตาบางส่วนอาจถูกทำลายอย่างช้า ๆ ทำให้ความโปร่งแสงของเลนส์ตาลดลง ตาจะขุ่นลงเรื่อย ๆ ในที่สุดจะเกิดเป็นต้อกระจก สายตาผิดปกติ และสุดท้ายอาจมองไม่เห็น
4. คลื่นวิทยุที่มีความถี่ระหว่าง 3-10 จิกะเฮิรตซ์ (มีความยาวคลื่นระหว่าง 10 ถึง 3 เซนติเมตร) ผิวหนังชั้นบนสามารถดูดกลืนพลังงานมากที่สุด เราจะรู้สึกว่าเหมือนกับถูกแสงอาทิตย์
5. คลื่นวิทยุที่มีความถี่สูงกว่า 10 จิกะเฮิรตซ์ (มีความยาวคลื่นน้อยกว่า 3 เซนติเมตร) ผิวหนังจะสะท้อนให้กลับออกไป โดยมีการดูดกลืนพลังงานเล็กน้อย
ข้อดี : ติดตั้งเพื่อเชื่อมโยงการติดต่อได้สะดวก เพียงต่ออุปกรณ์เครื่องรับ-ส่งวิทยุกับอุปกรณ์คอมพิวเตอร์ แล้วตรวจสอบความเรียบร้อยของระบบก็สามารถจะสื่อสารข้อมูลทั้งภายในและภายนอกอาคารได้ เนื่องจากในการสื่อสารด้วยระบบวิทยุจะมีระบบความพร้อมก่อนทำการรับส่งข้อมูล จึงไม่ค่อยมีปัญหาเรื่องสัญญาณรบกวน
ข้อเสีย : มีอัตราเร็วในการส่งข้อมูลต่ำ นอกจากนี้ยังต้องทำการขออนุญาตใช้ความถี่วิทยุกับกรมไปรษณีย์โทรเลขเสียก่อน สำหรับค่าใช้จ่ายในเรื่องของอุปกรณ์สื่อสารนั้นค่อนข้างจะมีราคาแพงกว่าการสื่อสารด้วยสายสัญญาณ
ไมโครเวฟ (Microwave)
สัญญาณคลื่นความถี่ประมาณ 100 เมกะเฮิรตซ์ เดินทางเป็นเส้นตรง ทำให้สามารถปรับทิศทางการส่งได้แน่นอน
การบีบสัญญาณส่งให้เป็นลำแคบ ๆ จะทำให้มีพลังงานสูง สัญญาณรบกวนต่ำ การปรับจานรับและจานส่งสัญญาณให้ตรงกันพอดี
จะทำให้สามารถส่งสัญญาณได้หลายความถี่ไปในทิศทางเดียวกันได้ โดยไม่รบกวนกัน
ข้อเสียคือ คลื่นไมโครเวฟไม่สามารถเดินผ่านวัตถุที่กีดขวางได้ สัญญาณอาจเกิดการหักเหในระหว่างเดินทางทำให้มาถึงจาน
รับสัญญาณช้ากว่าปกติและสัญญาณบางส่วนอาจสูญหายได้ เรียกว่าเกิด “multipath fading” จากสภาพภูมิอากาศ
และความถี่สัญญาณ คลื่นความถี่ตั้งแต่ 8 กิกะเฮิรตซ์ขึ้นไป จะถูกดูดซึมโดยพื้นน้ำ หรือเมื่อผ่านพายุฝน
เพราะมีความยาวคลื่นเพียงไม่กี่เซนติเมตร การตั้งสถานีรับ-ส่งสัญญาณไมโครเวฟ (relay station)
สามารถตั้งให้อยู่ห่างกันได้ถึง 30-50 กิโลเมตร นิยมนำมาใช้ในธุรกิจ งานให้บริการเช่น โทรศัพท์ทางไกล
โทรศัพท์มือถือ การแพร่ภาพโทรทัศน์ เป็นต้น เพื่อหลีกเลี่ยงการวางสายเคเบิล ระบบไมโครเวฟจึงมีราคาถูกกว่าระบบอื่น
คลื่นอินฟราเรดและคลื่นสั้น (Infrared and millimeter wave)
นิยมใช้สำหรับการสื่อสารระยะใกล้ คุณสมบัติของคลื่นคือ เดินทางเป็นแนวตรง ราคาถูก และง่ายต่อการผลิตใช้งาน
แต่ไม่สามารถเดินทางผ่านวัตถุหรือสิ่งกีดขวางได้ เช่น รีโมทสำหรับควบคุมวิทยุ วิดีโอโทรทัศน์ เครื่องเล่นบังคับต่าง ๆ เป็นต้น สามารถใช้คลื่นอินฟราเรดเพื่อการสื่อสารในระบบเครือข่ายท้องถิ่น (LAN) ได้ดี เพราะคุณสมบัติของคลื่นที่ไม่สามารถเดินทาง
ผ่านสิ่งกีดขวางได้ การใช้ระบบเครือข่ายในห้องทำงานที่มีอุปกรณ์ใช้คลื่นอินฟราเรดในการรับ-ส่งสัญญาณแบบหลาย
ทิศทางติดตั้งอยู่ ทำให้สะดวกต่อการใช้เครื่องคอมพิวเตอร์แบบพกพาซึ่งใช้อุปกรณ์รับ-ส่งด้วยคลื่นอินฟราเรด สามารถติดต่อกับระบบเครือข่ายของสำนักงานได้ และยังนำคุณสมบัติของคลื่นอินฟราเรดไปใช้ในการจัดประชุม ทุกคนสามารถสื่อสารข้อมูลด้วยเครื่องคอมพิวเตอร์ ผ่านอุปกรณ์สื่อสารคลื่นอินฟราเรดโดยไม่ต้องเสียเวลาในการวาง สายเชื่อมต่อระบบเครือข่ายให้ห้องประชุม
สัญญาณแสงเลเซอร์ (Laser beams)
เป็นระบบการสื่อสารแบบทางเดียว ผู้รับและผู้ส่งสัญญาณข้อมูลจึงต้องมีอุปกรณ์ทั้งในการรับและส่งข้อมูลด้วย
จึงจะสามารถสื่อสารได้สองทาง การส่งข้อมูลด้วยแสงเลเซอร์มีราคาถูกและช่วงความกว้างของช่องสัญญาณสูงมาก
เมื่อเทียบกับการใช้สัญญาณไมโครเวฟ ลำแสงเลเซอร์มีขนาดเส้นผ่าศูนย์กลางเพียง 1 มิลลิเมตร อุปกรณ์รับสัญญาณมีขนาดโตกว่าเพียงเล็กน้อย การติดตั้งอุปกรณ์รับ-ส่งสัญญาณ ต้องเป็นผู้ที่มีความละเอียด ข้อเสียของลำแสงเลเซอร์คือ
ไม่สามารถส่องผ่านสายฝนหรือหมอกหนา ๆ ได้รวมทั้งคลื่นความร้อนจากแสงแดดอาจทำให้แสงเลเซอร์เกิดการหักเหได้ เช่นการส่งสัญญาณแสงเลเซอร์ระหว่างอาคาร เป็นต้น